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1. Int.roduction

This lecture is a status report on work we have doing at SLAC on studies of large linear

colliders (LLC) with energies far beyond those attainable with either the SLC or LEP. I

had intended to begin with an extensive discussion of the' physics capabilities of electron

colliders, but after the preceding talks on theory, and the discussion on the experimental

difficulties in searches for relatively rare processes with proton colliders, I will considerably

shorten my remarks on these topics. Suffice it to say that electron-positron annihilation

studies have played a leading role in the last decade in establishing our "standard" view

of the elementary constituents of matter and their interactions, through such things as

studies of charmonium, "b"-onium; the discoveries of the tau, jets, B, D, Ac, F, gluons;

determination of ct, and the beginnings of measurements on its evolution with energy; etc.

The power of electron-positron annihilation studies comes from the fact that in the
I

annihilation ~f these point particles one obtains a well defined center-of-mass energy and

all of the elementary constituents produced in the final state are produced on a more

or less equal footing. In contrast, in proton-proton collisions, the collisions are between

composite particles, and light elementary constituents are produced much more copiously

than heavy ones. Thus, though the rate of production of D mesons, Cor example, is very

much larger at proton machines than at electron-positron machines, the large signal to

noise ratio at the electron machines has meant that the discovery and elucidation of most

of the properties of these particles has been done by experiments at electron machines.

While it is certain that proton machines will have an advantage in total center-of-mass

energy for the Iorseeable future, the electron machines will, I believe, continue to have an

advantage in delineating the properties of new entities.

In the next sections I will discuss energy and luminosity requirements for a LLC, the

design equations for these machines, the work that we have been doing on optimization
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of parameters, and finally tell you where I think we are in this process. The work I ~ill

describe has been contributed to by M. Allen, K. Bane, K. Brown, A Chao, D. Farkas, W.

Herrmannsfeldt, G. Loew, R. Miller, R. B. Neal, R. Noble, W. K. H. Panofsky, B. Richter,
!

L. Rifkin, D. Ritson, R. Ruth, C. Sinclair, R. Stiening, and P. Wilson. All these people

are of course only working part time on this problem.

2. Energy and Luminosity Requirements

In considering the design of the large LLC's of the future, the first question one has to

address is the energy that will be required. There is no precise answer to this question for

electron-positron machines, just as there is no precise answer for proton-proton machines.

Were there some expected sharp new threshold at energies much beyond the ZO, we would

have a number to specify. However, there is no such threshold and we can only use the

same qualitative arguments that have been used in the setting of the energy of the next

generation large proton machine at something between 10 and 40 TeV in the center-of­

mass. 'Ve might require that any LLC have the same "effective" energy as one of these

large proton machines. The question, then, becomes what is the same "effective" energy.

Ellisl ) and KaneZ) have discussed this question. In a proton machine the upper limit

of detectability for a given process occurs when the cross section for that process falls to a

value such that there are too few events to give a meaningful result. This cross section is a

function of the invariant mass of the state and this effective mass limit is the energy of an

equivalent electron-positron machine. Table I is from Ellis and shows the fraction of the

proton-proton center-of-mass energy required in an electron-positron machine for several

processes. The result of this analysis indicates very roughly that a 1.5 TeV e+e" machine ~

is "equivalent" to a 10 TeV proton machine, while a 3 TeV electron-positron machine is

"equivalent" to a 40 TeV proton machine. Of course this kind of analysis is very rough but

it suffices to set the scale of energy required in a LLC that would be roughly equivalent to

the proton machines that have been under discussion - we need an e+ e" energy of about

2 TeV.

We also have to set the luminosity for these LLC's and Eq, (1) shows the yield (Y)

in events per effective year (6 months running) as a function of S. The square of the

center-of-mass energy, and R, the ratio of the cross-section to the electromagnetic muon

pair cross section.

(1)
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R is process dependent and ranges from about 7 for the sum over all of the "old" quarks to

about 20 for W+W- pairs. It is evident from Eq. (1) that we need a luminosity of around

1033 cm-2s-1 for a practical machine.

Table I. Fraction of p - p ern energy required in an
e+e" collider to study various processes at the upper
limit of detectability in the proton machine.

e+e" Energy Fraction

Process 10 TeV p-p 40 TeV p-p

Jet Pairs 0.36 0.20

L+L- 0.03 • 0.01

Z, 0.12 0.04

W' O.~ 0.08

fJT 0.20 0.08

g 0.24 0.12

QQ 0.13 0.07

0.070.16I Geometric Mean l_~ ---.J'--- _

3. Design Equations

I will begin this discussion by assuming that the cross section of the beam at the

collision point is round. I will discuss later what happens if one drops this assumption.

We first examine the effect of the beam-beam interaction. Figure 1 shows the trajectory

of a particle in one beam as it passes through the other beam at the collision point. The

fields in these beams are extremely strong - on the order of several megagauss - and

thus strongly perturb the cross section of the beams as they pass through each other. In
a single particle case, illustrated in Fig. 1, we can define a disruption parameter (D) such

that

(2)D
_ CTz _ reCTz N
--- 2

F 'YCTro

where CTz and F are defined in the figure, re is the classical electron radius, N is the number

of particles in the bunch, 'Y is the energy in rest mass units and CTro is the radius of the

bunch. This beam-beam interaction tends to increase the luminosity in the collision region

for large values of D. As D approaches 1)a strong mutual pinch of the two colliding bunches

occurs and the average value of the beam radius during the collision time is reduced. As
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the value of D approaches 2, a kind of saturation sets in wherein the bunches oscillate in

cross section during the collision period and the time average value of the bunch radii no

longer decreases. Since the luminosity in this collision depends on (0';2) , the luminosity

increases over that which would obtain in the absence of this pinch effect in the fashion

shown in Fig. 2. The luminosity is given by

(3)

where I is the collision frequency, H is the enhancement factor shown in Fig. 2, and CTro

is the unperturbed radius of the colliding bunches.

As I mentioned earlier, the macroscopic fields in the collision region are very large

and this gives rise to a new constraint in the design of electron colliders - synchrotron

radiation from the collision region that can markedly increase the energy spread in the

beams. It one treats this synchrotron radiation (Beamstrahlung) in the classical fashion,

one can easily show that the mean energy loss from synchrotron radiation in the collision

region is proportional to the square of the beam energy times the square of the macroscopic

fields. In the case of a round beam the field is proportional to CT;1 and the fractional energy

spread coming from synchrotron radiation in this classical approximation is proportional

to the beam energy times the luminosity.

I have used the word "classical" several times in the description above. I have done so

for this approximation is incorrect for the beam parameters coming out of the optimiza.tion

described below. The problem is that the critical energy in the synchrotron radiation is on

the order of the beam energy itself and so the standard synchrotron radiation equations

do not apply. We are still investigating this problem and do not really understand yet how

to properly handle synchrotron radiation in the optimization procedure. In what follows

synchrotron radiation effects are treated in classical approximation and the optimization

is carried out as if this were the correct way to proceed. Be warned! \Ve do not yet know

whether how proper treatment will markedly change the optimization conditions.

A summary of the design equations is given below.

L = '1 N2 IH{D) = 3.5 X 1031P(MW)D B(D)
41r In {3* CTz(mm)
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UE. _ 414E(TeV) £(1033 cm-2s-1)

E· - uz(mm) f(Hz)

Nb
tu = K 'A 2G

(6)

(7)

(8)

Equation (4) defines the invariant emittance of the beam. Equation (5) gives the lumi­

nosity in cm-2s-1. Note that P is the power in one beam in megawatts, and 13- is the

lattice function at the collision point. Equation (6) defines the disruption parameter again.

Equation (7) gives the center-of-mass energy spread coming- from classical synchrotron ra­

diation. Equation (8) gives the efficiency for converting RF energy in the linac to energy

in the beam. In this equation K is a structure dependent constant, b is the number of

bunches per linac pulse, A is the RF accelerating wavelength, and G is the accelerating

gradient. This equation is an approximation and is good for efficiencies up to about 20%.

4. Machine Parameters and Optimization

The optimization of linear colliders is much more complex than the optimization of

electron storage rings. Storage rings are a mature technology and unit costs are well

known. There are collection of simple equations relating RF power requirements to beam

energy and machine radius which can easily be differentiated to yield a minimum cost. The

result of this optimization is that the radius of a machine is proportional to the square of

its energy. Such a minimization was done, for example, for LEP and the costs arrived at

by that procedure were within about 10% of the costs arrived at after a detailed design

effort. After 25 years of design and construction of storage rings, cost optimization is a

relatively simple procedure.

This is not the case for linear colliders. The cost of a given machine comes from a

complex interplay of factors effecting energy efficiency and factors effecting perfofm.s.nce.

Energy efficiency factors such as RF wavelength, accelerating gradient, particles pel' bench,

and bunches per pulse are intertwined with other factors such as bunch length, disr.ption

parameter, final focus system design, and synchrotron radiation at the collision po&.t.. Let

me begin then with some example solutions for big linear colliders that have no&: been

optimized. All machines discussed in what follows will have 2 TeV in the center-of. 9. a

luminosity of 1033 cm-2s-1, and a Beamstrahlung driven energy spread of 10% (st n dard

deviation).
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Table Il shows a partly optimized solution where we have minimized the AC power for

the assumed beam parameters" A final focus system has been completely designed for this

example and ray traced with a program that does beam optics through second order. The

beam size at the collision point is slightly elliptical due to aberrations in its final focus

system and gives a beam of 0.15 microns by 0.2 microns for an energy spread coming out

of the linac of ±0.5%. Transverse wake field effects in the linac have been evaluated (the

interaction of the beam back on itself through the resonant accelerating structure) and in

both the 10 cm and 5 em RF wavelength examples the steering tolerances with respect

to the axis of the accelerator are 50 microns arising from the short range wake field. In

addition, we have assumed 6 experimental areas sharing the luminosity and have designed

the beam splitters and combiners necessary for this kind of operation.

Table n. An incompletely optimized example of a 2 TeV
LLC at 1033 luminosity and 10% (JE./E* for two RF
wavelength.

13; (cm)
D
(Jz (mm)

En (mrad)

N
f (Hz)
b

Pb (MW per beam)
x(em)

G (MV/m)
L (km - each linac)

Number of Klystrons
Total Input AC Power (MW)

1

2

2
4 X 10-6

1.4 X 1010

2000

12
4.7

10 5
20 40

50 25

3500 3500
3g0 2g0

The machines are not too long, 100 km and 50 km respectively, when compared to the

100 km circumference of the large proton machines that give equivalent physics perfor­

mance. The klystrons required to drive the linac at either wavelength have peak RF powers

about a factor or 5 higher than those now available but have average powers considerably

lower. The input AC power assumpt~ons are based on an assumed klystron efficiency of

50%. These machines seem to be in the multi-billion dollar class and use a great deal of

input AC power.
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We have just begun to work on optimization procedures. Ritson has written a com­

puter program that maps a set of input parameters (energy, luminosity, Beamstrahlung

energy spread, final spot size, RF wavelength, klystron efficiency, etc.) to a set of output

parameters describing the machine (length, wall plug power, repetition rate, accelerat­

ing gradient, etc.). Adding in estimates of cost per unit length of accelerator structure,

klystron cost vs frequency and peak and average power, AC power cost, etc., the program

can search for a cost minimum. For example, Fig. 3 shows the relative cost of a 2 TeV,

L = 1033 eollider as a function of RF wavelength for two different assumed final spot

sizes. The curve shows that for a spot radius of 0.25 microns, the minimum cost occurs

for an RF wavelength of 6 em and gives 50 km Cor the total length of the two linacs at the

minimum. Reducing the spot size by a factor of two, shifts the optimum wavelength to 5

em, shortens the linac by 20%, and seems to reduce cost by 25%.

The optimization procedures are still primitive. We don't yet include constraints from

such things as transverse and longitudinal wake fields, limits on accelerating gradients

in the linac, technical limits on our power sources, etc. We still have much to do in
.-

understanding the basic limits of technology and beam dynamics Cor LLC's before we can

take these optimization procedures seriously. For now, they are useful in pointing out

regions of the parameter space where LLC's might be less costly than in other regions.

The proceeding analysis has assumed a round beam at the collision point and that

assumption makes the Beamstrahlung induced energy spread proportional to the energy

times the luminosity. If the beam could be made elliptical at the collision point, this

relation can be broken and it is possible in principle to get an arbitrary late large reduction

in Beamstrahlung at a given luminosity. Physically, the luminosity is inversely proportional

to the beam area, while the Beamstrahlung is proportional to the square of the magnetic

field in the beam. This magnetic field is, in turn, proportional to the inverse of the beam

perimeter. If aberrations in the final focus system do not prevent it, it is possible to

make the area divided by the square DC the perimeter arbitrarily small and so remove all

constraints on system design coming from Beamstrahlung.

Bassetti and Gygi-Hanney3) have calculated the effect on the beam induced energy

spread or using elliptical beams. Figure 4 shows their results for the relative Beamstrahlung

induced energy spread at constant beam area as a function of the ratio of the major to
minor axies of the beam. Large reduction in B~strahlung require large aspect ratios.

However aberrations in the final focus system will limit the size of the small dimension of

the spot and the use of flat beams will be more difficult in practice than the use or round
•
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beams for they will require more exotic higher order correction schemes.

As an example, we have compared what can be done with second order corrected

schemes for round and flat beams in a specific case. Both beams would have an area at the

collision point of 0.06 square microns in linear transport theory. Our tracking program

indicates the area of the "round" beam increases to O.Og square microns while that or the

flat beam, with a 20 to 1 aspect ratio, increases to 0.16 square microns.

We have run this flat beam example through the optimization program and find a very

different optimization for our 2 TeV machine. Some of the relevant parameters are:

Accelerating Gradient

Total Length

RF Wavelength

Total Input AC Power

Fractional Energy Spread

125 MY per m

16 km

3.5 em
145MW

0.7%

These parameters look interesting - particularly the reduction in the total AC power

consumption. However, before one gets too excited about this kind of beam, remember

that the constraints have not yet been put in the optimization program. Thus, for example,

we don't know it's possible to get an accelerating gradient of 125 MY per meter at 3.5

em. Also the effects of the wake fields in the linac in this example are extremely severe.

Alignment tolerances due to wake fields are proportional to the accelerating gradient times

the cube of the RF wavelength and while the high gradient in this example helps the

alignment's problem, the small wavelength hurts it badly. Alignment tolerances for this

example are g microns in the linac.

5. Conclusion

This lecture has been more in the nature of a status report on our program to design

LLC's than a description of a design of a practical machine. There remains a great deal

of work to do in the areas of theoretical studies of the behavior of intense beams in

accelerating structures, the development of the technology required to build these machines

at reasonable cost, and in the understanding of the tradeoffs between parameters that will

lead to minimum cost solutions. At SLAC we are working in the following areas.
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• Theoretical studies of beam dynamics in linear colliders.

• Optimized accelerator structures giving minimum wake field effects for a given accel­

erating gradient.

• Experimental studies of the breakdown strength of copper accelerating structures to

determine the maximum accelerating gradient that can be maintained as a function of

RF wavelength and pulse length.

• The development of high efficiency RF power sources including a proof of principle

laser driven source with 100 MW of peak power and efficiency of greater than 70%.

• Theoretical studies of low aberration final focus systems.

• Improved system optimization programs to minimize the costs of a given facility.

There is an enormous amount of work to do and I would feel much more comfortable if

we had more resources to put on these important problems.

Probably the single most important milestone on the road to LLC's is the completion

and successful operation of the SLC. This machine, to be completed at SLAC in late 1986,

is really the proof of principle for the entire concept. When it runs, we will all be more

confident that linear colliders can supplant storage rings and give the very high energies

in the electron-positron system that will be required for future experiments..

I have often been asked how soon I believe a serious proposal for an LLC could be

made. I always try to avoid answering this question, but sometimes I can't get out of

it. The difficulty in answering it comes because the stakes in the game are now so high.

What is wanted by the physics community is a TeV machine - a factor of 20 larger than

the energy of the first (not yet completed) linear collider, the SLC. That large a step is

unprecedented in the development of a new accelerator technology.

Electron storage rings have been around for about 25 years and the typical step in

energy from one machine generation to the next has been about a factor of three. Proton

synchrotron have been around even longer and a typical step in energy between generations

has been around a factor of five. It is true that the SSC now under development in the

United States involves a step of 20 in energy over the largest machine now operating, the

Tevatron at FNAL, but a great deal of experience has been accumulated about proton

synchrotrons and about the behavior of stored beams through studies in many electron

and a few proton storage rings.

With all of these disclaimers out of the way, I will be optimistic. I think that there

is a reasonable chance of being ready to make a serious proposal in 4 to 5 years. By that
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dme the SLC will have been running for a few years, much new technology will have been

developed, and we will understand our optimization procedures better. Perhaps at the

next ICFA seminar we can describe a serious design for an LLC driven by a conventional

linac as is under study at SLAC and Novosibirsk, or by some new technology such as laser

acceleration or wake field acceleration.

We all know that the future in high energy physics is in higher energy machines and

given a reasonable fraction of the effort devoted to machine development of that now

devoted to experiments on existing machines and those under construction. I believe that

we can be ready for the next step in a timely fashion.
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Fig. 1. The effect of the intense fields in a bunch
on a particle of the opposite sign passing through
the bunch.
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Fig. 2. Luminosity enhancement factor (H) as a
function of the disruption parameter (D).
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Fig. 3. Relative cost of a 2 TeV, 1033 luminosity collider as a
function of RF wavelength for two different final spot radii.
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Fig. 4. Ratio of synchrotron radiation energy loss for an ellip­
tical beam and a round beam 3..<; a function of the aspect ratio
of the elliptic-a I beam.
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